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Figure 1: Our realtime system automatically captures 3D facial and eye gaze performances using monocular video sequences: (left) the
input videos downloaded from the Internet (column 1), the detected 2D facial features (green dots) and the classified iris and pupil pixels (red
pixels) (column 2) and the captured 3D head poses, facial expression and eye gaze (column 3); (right) our system is running on a live stream.

Abstract

This paper presents the first realtime 3D eye gaze capture method
that simultaneously captures the coordinated movement of 3D eye
gaze, head poses and facial expression deformation using a single
RGB camera. Our key idea is to complement a realtime 3D facial
performance capture system with an efficient 3D eye gaze tracker.
We start the process by automatically detecting important 2D facial
features for each frame. The detected facial features are then used
to reconstruct 3D head poses and large-scale facial deformation us-
ing multi-linear expression deformation models. Next, we intro-
duce a novel user-independent classification method for extracting
iris and pupil pixels in each frame. We formulate the 3D eye gaze
tracker in the Maximum A Posterior (MAP) framework, which se-
quentially infers the most probable state of 3D eye gaze at each
frame. The eye gaze tracker could fail when eye blinking occurs.
We further introduce an efficient eye close detector to improve the
robustness and accuracy of the eye gaze tracker. We have tested our
system on both live video streams and the Internet videos, demon-
strating its accuracy and robustness under a variety of uncontrolled
lighting conditions and overcoming significant differences of races,
genders, shapes, poses and expressions across individuals.

Keywords: 3D eye gaze tracking, facial performance capture, fa-
cial animation and control
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1 Introduction

Facial animation is an essential component of many applications,
such as movies, video games and virtual environments. Thus far,
one of the most popular and successful approaches for creating vir-
tual faces often involves capturing facial performances of real peo-
ple. An ideal solution to the problem of facial performance capture
is to use a standard video camera to capture live performances in
3D. The minimal requirement of a single video camera is particu-
larly appealing, as it offers the lowest cost, a simplified setup, and
the potential use of legacy sources and uncontrolled videos (e.g.,
Internet videos).

Recent advancements in computer graphics and vision have per-
mitted the development of an impressive series of 3D facial per-
formance capture methods, including both online [Cao et al. 2014a;
Cao et al. 2015] and offline systems [Garrido et al. 2013; Shi et al.
2014], using a single RGB camera. Notably, Cao and his col-
leagues [2015] presented the first realtime facial performance cap-
ture system for capturing 3D head poses, large-scale facial defor-
mation and medium scale facial details such as expression wrinkles.
However, all the previous facial capture systems lack the capability
to capture an indispensable component of facial performance: eye
gaze. As noted in Ruhland et al. [2014], the Latin proverb states:
“The face is the portrait of the mind; the eyes, its informers.” Eyes
are central in conveying emotional information because we are able
to interpret the intentions and feelings of other humans by observ-
ing their eyes. Animation and control of realistic 3D virtual eyes
remains challenging because eye gaze is so subtle that any unnatu-
ral gazing will be discerned easily by human eyes and will probably
imply wrong intentions to the observers.

This paper introduces the first realtime 3D eye gaze capture method
that simultaneously tracks 3D eye gaze, head poses and large-scale
facial deformation using a single RGB camera (See Fig. 1). We
start the process by automatically detecting important facial fea-
tures such as the nose tip for each input frame. The detected facial
features are then used to reconstruct 3D head poses and large-scale
facial deformation using multi-linear expression deformation mod-
els. Next, we train a user-independent iris and pupil pixel classifier



based on random forests and use it to extract the iris and pupil pix-
els in each frame. We formulate the eye gaze tracker in the MAP
framework, which sequentially infers the most probable 3D eye
gaze at each frame using the reconstructed 3D head poses and the
classified iris and pupil pixels of the current frame, as well as the
estimated eye gaze state from the previous frame. The eye gaze
tracker often fails when eye blinking occurs. This challenge moti-
vates us to develop a novel eye close detector to further improve the
robustness and accuracy of our eye gaze tracker.

The final facial performance capture system is robust and fully au-
tomatic, allowing for simultaneous capture of 3D head poses, large-
scale facial expression deformation and 3D eye gaze using a single
RGB camera. We have tested our system on both live video streams
and the Internet videos, demonstrating its accuracy and robustness
under a variety of uncontrolled lighting conditions and overcom-
ing significant differences of races, genders, shapes, poses and ex-
pressions across individuals. We assess the quality of captured eye
gaze by comparing with ground truth data annotated by human sub-
jects. In addition, we evaluate the importance of key components
of our 3D gaze tracker and show our system achieves the state-of-
the-art accuracy by comparing it against alternative systems. Fi-
nally, we show the applications of our performance capture system
in performance-based facial animation, realtime gaze data capture
and eye gaze visualization.

1.1 Contributions

Our system is made possible by the following technical contribu-
tions:

• First and foremost, the first realtime 3D eye gaze capture sys-
tem that complements with any facial performance capture
system using RGB images.

• A novel user-independent iris and pupil pixel classifier based
on random forests.

• An efficient eye gaze tracker that applies importance sampling
to infer the most probable eye gaze state in the MAP frame-
work.

• A new eye close detector that significantly improves the ro-
bustness and accuracy of our eye gaze tracker.

2 Background

Our realtime facial performance system automatically tracks 3D
eye gaze, 3D head poses and facial expression deformation using
a monocular RGB camera. Therefore, we focus our discussion
on methods and systems developed for acquiring 3D facial perfor-
mances and gaze motion.

2.1 Facial Performance Capture

Facial performance capture has a long history in computer graphics
and vision. Various methods have been proposed in film and game
production, such as marker-based motion capture systems [Bickel
et al. 2007; Huang et al. 2011], marker-less facial capture that
uses depth and/or color data obtained from structured light sys-
tems [Zhang et al. 2004; Ma et al. 2008; Weise et al. 2009] and
multi-view stereo reconstruction systems using RGB images ob-
tained by multiple cameras [Bradley et al. 2010; Beeler et al. 2010;
Beeler et al. 2011; Valgaerts et al. 2012]. Recent advancement in
3D depth sensing has enabled a number of facial performance cap-
ture techniques using RGBD cameras [Weise et al. 2011; Chen et al.
2013; Bouaziz et al. 2013; Li et al. 2013; Li et al. 2015; Hsieh et al.
2015; Liu et al. 2015].

A more appealing solution for facial capture is to use a monocu-
lar RGB camera, as it offers the lowest cost and a simplified setup.
These methods [Chai et al. 2003] first locate facial landmarks such
as the nose tip and then use them to drive 3D facial animation. Re-
cent advances for locating/tracking facial landmarks include con-
strained local model [Saragih et al. 2011; Baltrušaitis et al. 2012]
and boosted regression [Cao et al. 2012; Xiong and De la Torre
2013; Ren et al. 2014]. In particular, Cao and his colleagues [2012]
proposed an explicit two-level cascaded shape regressor for facial
feature detection and Ren and his colleagues [2014] further refined
the accuracy and efficiency of facial feature detector by utilizing the
locality principle and a local binary feature based shape regressor.

Recently, Cao and colleagues [2013; 2014a; 2015] extended the
idea of cascaded shape regression [Cao et al. 2012] for 3D fa-
cial capture. Their first system trained a user-specific 3D shape
regressor and used it to directly track 3D facial expression de-
formation from 2D image sequences at runtime. Next, Cao and
colleagues [2014a] proposed a user-independent displacement dy-
namic expression regression that adaptively refines the camera ma-
trix and user identity during tracking. Recently, Cao and col-
leagues [2015] further extended the idea to realtime high-fidelity
facial capture by adding a local user-specific detail regressor. Be-
sides these online techniques, there are also offline systems that
combine large-scale expression deformation tracking with shape-
from-shading to capture detailed and dynamic 3D facial geome-
try [Garrido et al. 2013; Shi et al. 2014].

Our work enhances facial performance capture by adding a realtime
3D eye gaze tracker into facial capture. This enhancement allows
us to capture coordinated movements between 3D head poses, fa-
cial expression and eye gaze, a capability that has not been demon-
strated in any previous work. It is worth mentioning that our frame-
work is flexible and our eye gaze tracker can be integrated with
any 3D facial capture system using RGB images (e.g., [Beeler et al.
2011; Valgaerts et al. 2012; Bouaziz et al. 2013; Li et al. 2013; Shi
et al. 2014; Cao et al. 2015]) to capture coordinated movements
between 3D head poses, facial deformation and eye gaze.

2.2 Eye Gaze Tracking

Eye gaze tracking and eye detection have been an active research
topic in the field of human computer interaction and computer vi-
sion for many decades. Previous methods, which are mainly fo-
cused on 2D gaze detection and tracking, can be classified into
two categories: IR-illumination based approaches and image based
approaches. The active IR illumination based approaches exploit
the spectral (reflective) properties called cornea reflection under
IR illumination to efficiently detect iris and pupil pixels while the
image-based approaches aim to detect or track eye gaze based on
the shapes and/or appearances of the human eyes.

Active IR based methods (e.g., [Morimoto and Flickner 2000]) is
one of the most successful approach for eye gaze capture. Due
to the simplicity and effectiveness of the method, almost all the
commercial eye trackers (e.g., [Anon, Applied science laboratories
2015; Lc Technologies 2015; Tobii Technologies 2015]) are based
on this technique. However, the IR based method is intrusive be-
cause it requires users to wear a special glass or set up a dedicated
IR device for gaze capture. In addition, unlike our method, it is of-
ten focused on 2D eye gaze capture alone. Therefore, they are not
flexible for capturing 3D eye gaze in uncontrolled videos.

Traditional methods in image-based approaches can be further di-
vided into three categories: template matching [Chau and Betke
2005; Corcoran et al. 2012], appearance based methods [Huang
and Wechsler 1999; Huang and Mariani 2000] and feature based
methods [Kawato and Ohya 2000; Tian et al. 2000]. However,



Figure 2: An overview of our system.

those methods are often not robust enough to handle variations in
lighting, subjects, head poses and facial expressions. Recent ef-
forts are mainly focused on applying cascade shape regression [Cao
et al. 2012] or deep learning methods for pupil center detection.
By adding two extra landmarks around the eye pupil center, those
methods can detect both facial feature locations and the center of
the pupil in a single image. Notably, the Face++ tracker [2015] de-
veloped by Megvii Technology corporation utilizes the deep neural
network model for detecting and tracking 2D landmarks, achieving
the state-of-the-art performance in 2D facial feature and pupil cen-
ter detection. Our eye gaze detection and tracking method is differ-
ent because we combine iris and pupil pixel classification, eye close
detection, edge map of the iris and pupil region, and 3D head poses
for 3D eye gaze tracking. Section 7.2 shows our eye gaze detection
achieves much more accurate results. Our goal is also different be-
cause we focus on 3D facial performance capture with 3D eye gaze
rather than 2D facial feature detection and pupil center detection.

Our work is relevant to recent efforts on appearance-based gaze es-
timation [Sugano et al. 2014; Wood et al. 2015; Zhang et al. 2015],
which learns a regression function directly from an input eye image
and a 3D head pose to eye gaze. Briefly, these systems first estimate
3D head pose using a generic 3D face model and six 2D facial fea-
tures detected from input images, including the left and right corner
of the mouth and the four corners of the left and right eyes, and then
apply deep neural networks to learn a regression function directly
from 2D eye images and 3D head poses to eye gaze. Our system is
different from theirs in the following aspects. First, unlike their sys-
tems, our system is flexible and can be integrated with any existing
3D facial performance capture system because it does not require
any offline camera calibration process for gaze capture. Second,
we introduce an eye close detector into the system, thereby sig-
nificantly improving the robustness and accuracy of our eye gaze
tracker. Finally, unlike their systems, which aim to estimate eye
gaze from a single image, our gaze tracking is focused on 3D fa-
cial performance capture that simultaneously tracks 3D head poses,
facial deformation and eye gaze simultaneously from a monocular
RGB sequence.

3 Overview

We aim to build a realtime facial performance capture system that
robustly and accurately tracks 3D eye gaze, head poses and facial
expression deformation using a monocular RGB camera. The prob-
lem is challenging because head poses, facial expression deforma-

tion and eye gaze motion are often coupled together. An accurate
estimate of 3D eye gaze often requires an accurate estimate of 3D
head poses and facial deformation around both eyes. On the other
hand, accurate detection of eye gaze and eye close/open can fur-
ther improve the reconstruction accuracy of facial expression de-
formation around both eyes. In addition, ambiguity caused by the
loss of depth information in the projection from 3D to 2D and un-
known camera parameters and lighting conditions further compli-
cates the problem. To address this challenge, we propose an end-to-
end facial performance system that simultaneously tracks 3D head
poses, eye gaze and facial expression deformation using a single
RGB camera. The whole system consists of five main components
summarized as follows (see Fig. 2).

3D facial reconstruction. We start the process by automatically
detecting and tracking important facial features such as the nose
tip in monocular video sequences. We introduce a data-driven 3D
facial reconstruction technique to reconstruct 3D head poses and
large-scale expression deformation using multilinear expression de-
formation models.

Pixel classification for iris and pupil. We introduce a novel user-
independent pixel classifier to automatically annotate iris and pupil
pixels in the eye region, which is bounded by detected facial land-
marks in the eye region. We further obtain the 2D location of the
pupil center by applying the mean-shift algorithm [Comaniciu and
Meer 2002] to the classified iris and pupil pixels. We discuss how
to extract the outer contour of iris (i.e., limbus) to further improve
the robustness and accuracy of our gaze tracker.

Automatic eyeball calibration. Tracking 3D eye gaze across an
entire video sequence requires not only modelling the geometry of
3D eyeball but also estimating the location of the eyeball and the
size of the iris and pupil region. We approximate the geometry of
the eyeball with a sphere of a particular radius (12.5mm), which
corresponds to the average radius of adult’s eyeballs. We introduce
an eyeball calibration step, which is automatically done at the be-
ginning of each capture, to estimate the 3D location of the eyeball
and the size of the iris and pupil region.

Eye gaze tracking. We represent the state of 3D eye gaze based
on the location of each pupil center on the surface of the eyeball
sphere. We sequentially update the state of the eye gaze based on
the detected 2D pupil center, the outer contour of iris and estimated
3D head poses. We formulate the problem in the Maximum A Pos-
teriori (MAP) framework and apply importance sampling to infer
the most probable state of eye gaze.



(a) (b) (c)

Figure 3: 2D facial feature tracking and 3D face reconstruction:
(a) the input image; (b) tracked 2D facial features; (c) recon-
structed 3D pose and facial deformation without eye gaze motion.

Eye close detection. In practice, we have observed that the eye
gaze tracking algorithm often fails when eye blinks. This challenge
leads us to introduce a novel eye close detector to automatically
detect whether the eye is open or closed. Once the eye is closed,
we turn off the iris and pupil pixel classifier and gaze tracking and
predict the state of the eye gaze directly using the result from the
previous frame. In addition, we discuss how to use eye gaze con-
straints embedded in training data to further improve the accuracy
and robustness of the system.

We describe these components in detail in the following sections.

4 2D Facial Feature Tracking and 3D Face Re-
construction

This section discusses how to reconstruct 3D head poses and fa-
cial expression deformation from a RGB video sequence, which is
critical to our 3D gaze tracker. We start with 2D facial features
detection/tracking (Fig. 3 (b)), which builds on local binary feature
(LBF) based regression [Ren et al. 2014]. Next, we reconstruct the
3D head poses and large-scale expression deformation (Fig. 3 (c))
using the tracked 2D features.

4.1 2D Facial Feature Detection/Tracking

This step aims to detect and track 2D facial features from a monoc-
ular video. This task is achieved by a local binary feature (LBF)
based regression, which has shown to outperform the cascaded re-
gressors [Cao et al. 2012] in both accuracy and efficiency. Local
binary feature is a long 1D vector assembled by 1D binary features
obtained at each landmark. Given this vector, the facial shape S
(i.e., a collection of 2D facial feature locations) is progressively
refined by estimating a shape increment ∆S stage-by-stage. The
shape increment ∆St at stage t is regressed using the input image
and extracted local binary features using random forests (Eq. 1).

∆St = W tΦt(I, St−1), (1)

where W is a linear regression matrix, I is the input image, St−1

is the shape at the previous stage, and Φt is the mapping function
(random forests) which maps (I and St−1) to the local binary fea-
tures L.

Though the LBF regressor [Ren et al. 2014] is fast and robust, we
found the result could degenerate significantly for cases with ex-
treme poses and low-quality image. We have made two refine-
ments in the training/prediction process (for details, please refer
to Appendix). The training database we use for learning the LBF
regressors consists of 10858 images, which are selected from la-
beled faces in the wild (LFW) [Huang et al. 2007] and FaceWare-
house [Cao et al. 2014b].

4.2 3D Facial Performance Reconstruction

We now describe how to reconstruct 3D facial deformations and
head poses from the tracked 2D locations. Similar to Shi et
al. [2014], we represent the 3D facial models using multi-linear
models (Eq. 4) [Vlasic et al. 2005; Cao et al. 2013], and formulate
the problem in an optimization framework.

We represent the 3D facial models using multi-linear mod-
els [Vlasic et al. 2005; Cao et al. 2013]. Specifically, we describe a
3D face using two low-dimensional vectors controlling the identity
and expression of the 3D face, respectively:

M = R(Cr×2m
T
id×3m

T
exp) + T, (2)

where M represents large-scale facial geometry of an unknown
subject, R and T represent the global rotation and translation of
the subject, Cr is the reduced core tensor, and mid and mexp are
identity and expression parameters respectively. Our multi-linear
model was constructed from FaceWarehouse [Cao et al. 2014b],
which contains face meshes corresponding to 150 identities and 47
facial expressions. In our experiment, the numbers of dimensions
for the identity and expression parameters are set to 50 and 25.

By assuming an ideal pinhole camera model, the projected 2d fea-
tures at image space can be represented as:

pk = Q(R((Cr×2m
T
id×3m

T
exp)

(k)
) + T ), (3)

where Q = [f 0 u; 0 f v; 0 0 1] is the ideal pinhole projection ma-
trix, (R, T ) is the 3D rotation and translation, f is the focal length
and (u, v) is the principal point.

The goal here is to minimize the difference between the detected
2D features and the projected 2D features from the hypothesized
face model. Similar to Shi et al. [2014], extra prior and smoothness
terms for expression and pose are also imposed. Note that the iden-
tity weight and focal length are only estimated at the start of the
video, and then fixed for the remaining frames. We follow the same
binary search process in [Cao et al. 2013] to find the optimal focal
length. The principle point (u, v) is set to the center of the image.
For the rest frames, the objective function is as follows.

arg min
mexp,R,T

Efeature + w1Eexp + w2E
s
exp + w3E

s
pose, (4)

where the first term is the feature term that measures how well
the reconstructed facial geometry matches the observed facial fea-
tures across the entire sequence. The second term is the prior term
used for regularizing the expression parameters, which is formu-
lated as a multivariate Gaussian. The third and fourth terms are the
smoothness terms that penalize sudden changes of expressions and
poses over time. In all of our experiments, w1, w2 and w3 are set
to 0.00001, 100 and 10, respectively.

The pose smoothness term constrains large rotation and translation
changes between frames:

Espose = w4E
s
rotation + w5E

s
translation, (5)

where w4 and w5 are set to 1 and 0.1, respectively.

5 User-independent Iris and Pupil Pixel Clas-
sifier

In this section, we describe how to train a user-independent iris and
pupil pixel classifier and use it to extract the pupil centers required
for 3D gaze tracking. In addition, we extract the outer contour of
iris to further improve the accuracy of our gaze tracker.



5.1 Iris and Pupil Pixel Classification

The eyeball, though its small size, is capable of executing a wide
range of movements, fixation, saccade and smooth pursuit [Ruhland
et al. 2014]. The pattern of eyeball movement is often quite com-
plex. It can not only smoothly shift at a small acceleration but also
can shift at a very large acceleration, such as the eye saccade. Thus
temporal tracking could be vulnerable to error accumulation. To
address this challenge, we introduce an efficient user-independent
iris and pupil pixel classifier to perform per-frame iris and pupil
pixels classification, which provides the prerequisite on the agility
and accuracy of our eye gaze tracker.

We propose to use randomized forest [Breiman 2001] to train the
iris and pupil pixel classifier. We advocate the use of randomized
trees because they are robust and fast, while remaining reasonably
easy to train. A randomized forest is an ensemble of L decision
trees D1, . . . , DL. Each node in the tree contains a simple test that
splits the space of data to be classified, in our case the space of im-
age patches. Each leaf contains an estimate based on training data
of the posterior distribution over the classes. A new patch is classi-
fied by dropping it down the tree and performing an elementary test
at each node that sends it to one side or the other. When it reaches a
leaf, it is assigned probabilities of belonging to a class depending on
the distribution stored in the leaf. Once the trees D1, . . . , DL are
built, their responses are combined during classification to achieve
a better recognition rate than a single tree could. More formally, the
tree leaves store posterior probabilities Prλ(l,W )(c|w), where c is
a label in the label set C and λ(l, w) is the leaf of tree Dl reached
by the patch w. Such probabilities are evaluated during training as
the ratio of the number of patches of class c in the training set that
reach λ and the total number of patches that reach λ. The whole
forest achieves an accurate and robust classification by averaging
the class distributions over the leaf nodes reached for all L trees:

c̃ = arg max
c

1

L

∑
l=1,...,L

Prλ(l,W )(c = Y (w)). (6)

Node testing. The tests performed at the nodes are simple binary
tests based on simple functions of raw pixels taken in the neighbor-
hood of the classification pixel. Our feature function calculates the
difference of intensity values of a pair of pixels taken in the neigh-
borhood of the classification pixel:

F = I(T (p1))− I(T (p2)), (7)

where I is the input eye image, T is the 2D similarity transforma-
tion from the reference to the current eye image, and p1 and p2 are
the 2D locations of the feature pair.

To make the feature functions invariant to rotations, translations
and scalings, we compute the similarity transformation to align
the current eye image with the reference eye image in the train-
ing database. We calculate the similarity transformation based on
the four lankmarks located on the lower eyelid (see Fig. 4). We
normalise the offset of each pixel based on the calculated simi-
larity transform to ensure the features are invariant to similarity
transformations. If the value of a splitting function is larger than
a threshold, go to left child and otherwise go to right child. In all
our experiments, the patches are of size 30 × 30. And the optimal
threshold for splitting the node is automatically determined by max-
imizing the information gain for particular features. We implement
the randomized forest prediction on GPU for realtime performance.
The average computational time for classification is about 2ms per
frame for both of eyes.

(a) (b) (c)

Figure 4: The feature function is invariant to translations, rotations
and scalings: (a): the reference eye image in the training data;
(b): the current eye image; (c): the similarity transformation that
aligns the reference eye image with the test eye image. Note that we
calculate the similarity transformation based on the four landmarks
located on the lower eyelid.

(a) (b) (c)

Figure 5: Some selected features by randomized trees, which are
intuitive and easy to understand. For example, the examples above
imply the intensity values of the iris and pupil pixels are often less
than the intensity values of the skin around the eyes ( (a) &(c)) and
the sclera (b).

Training data. To learn a classifier for automatic iris and pupil
pixel detection, we need to construct a training database containing
a large set of eye images. In our experiments, we use a subset of
W300 images [Huang et al. 2007] as the training image data. The
training data contains large variations of head poses, facial expres-
sions, lighting conditions and races. We selected 2941 images from
the training data, and manually label the eye iris and pupil pixels
and sclera ad skin pixels for each image. All our training pixels are
confined in the eye region. We label the iris and pupil pixels as the
positive examples and label the sclera and skin pixels as the nega-
tive examples. For all the faces with closed eyes, we regarded all
the pixels in the eye regions as the sclera and skin pixels. The total
number of the training pixel patches is about eight million.

Randomized trees learning. We use the randomized trees algo-
rithm to learn binary forests. Each tree is trained separately on a
small random subset of the training data. The trees are constructed
in the classical, top-down manner, where the tests are chosen by
a greedy algorithm to best separate the given examples. At each
node, several candidates for a feature function are generated ran-
domly, and the one that maximizes the expected gain in information
about the node categories is chosen. The process of selecting a test
is repeated for each nonterminal node, using only the training ex-
amples falling in that node. The recursion is stopped when the node
receives too few examples, or when it reaches a given depth. Ex-
perimentally, we randomly select 512 candidate features for each
node and stop the training when the tree depth exceed 13 or the
number of examples in the leaf node is less than 10. We train 60
trees independently and combine them in the final decision forests.

The selected features are often intuitive and easy to understand. For
example, the intensity values of the iris and pupil pixels are of-
ten less than the intensity values of the skin around the eye (Fig. 5
(a) &(c)) and sclera (Fig. 5 (b)).



(a) (b) (c) (d) (e)

Figure 6: Classified iris and pupil pixels and extracted pupil center: (a): eye image and its corresponding eyelid landmarks (shown in green);
(b): the upper (shown in red) and lower (shown in blue) spline curves defined by the eyelid landmarks; (c): the eye region mask (oeye); (d):
the probability map (Iprob) obtained by the iris and pupil pixel classifier. The intensity value of each pixel represents the probability of being
an iris and pupil pixel. Brighter pixels indicate higher probabilities. The green dot is the 2D pupil center (ocen) extracted by the mean-shift
algorithm; (e): the silhouette map (osil) of the iris and pupil region obtained by thresholding the probability image (Iprob).

5.2 Observation Extraction

We now describe how to extract the pupil center and the edge map
of iris and pupil region required for 3D gaze tracking.

2D pupil center. The eye landmarks obtained by facial feature
tracking defines the 2D location of the eyes in the face image. We
can determine the eye image using the bounding box of the eye
landmarks (Fig. 6(a)). The eye landmarks also provides the spe-
cific eye region in the eye image, including pupil center and sclera
pixels. We determine the region by fitting two cubic splines to the
2D landmarks in the upper and lower eyelid (Fig. 6(b)). We fill the
closed polygon to obtain the silhouette map of the eye region oeye
(Fig. 6(c)). With the trained iris and pupil pixel classifier, we can
automatically annotate the label of each pixel in the eye image and
obtain a probability map Iprob with the same size as the extracted
eye image (Fig. 6). We apply the mean-shift algorithm to extract the
2D pupil center ocen. The kernel function required for the mean-
shift algorithm is defined as follows:

k(x, xi) = (Iprob(xi) ∗ osil(xi))exp(−
‖x− xi‖2

σ2
), (8)

where the bandwidth σ is chosen as the half of the eyes height and
osil is the silhouette map of the iris and pupil region. We obtain
the silhouette map of the iris and pupil region by first thresholding
Iprob using a pre-defined threshold τ , which is experimentally set to
0.65, performing pixel open morphism operation to remove some
noise, and extracting the strongest connected components of the
remaining pixels. Fig. 6(e) shows the resulting rediris and pupil
silhouette map osil.

Edge map of the iris. The edge map oedge of iris region, like the
detected pupil center ocen, provides another strong visual cue about
the true state of eye gaze. We apply Canny edge operator [Canny
1986] to extract the edge map of the eye region. However, the re-
sulting edge maps are often very noisy and contain many outliers
(Fig. 7(a)). In our experiment, we adopt two criteria to reduce noise
and remove outliers in the extracted edge map. The first criterion
requires that the Euclidean distance between inlier edge pixels and
the extracted pupil center ocen must lie within τ1 and τ2 times the
height of eye region. The second criterion ensures that the angle
between the gradient direction of the inlier pixel and the direction
pointing from the pupil center ocen to the pixel must be smaller than
90 degrees. Specifically, the two criteria are defined as follows:

τ1Height(osil) ≤ ‖p− ocen‖2 ≤ τ2Height(osil)
(p− ocen)T gradient(p) ≥ 0,

(9)

where p denotes the location of the candidate pixel in the edge map.

The thresholds τ1 and τ2 are experimentally set to 0.1 and 0.6 re-
spectively. Fig. 7(b) shows a side-by-side comparison for the edge
map before and after noise reduction and outlier removal.

(a) (b)

Figure 7: Edge map with/without outlier removal: (a): the original
edge pixels obtained by the Canny operator; (b): the resulting edge
map after outlier removal.

6 Model Based 3D Eye Gaze Tracking

This section describes our idea on how to track the 3D eye gaze
from the reconstructed 3D head poses, facial deformation (Sec-
tion 4), and the extracted 2D pupil center and edge map (Section 5).
We first calibrate the eyeball center and the size of iris and and pupil
region which defines a user-specific eye model. We then track the
pupil center frame-by-frame. We formulate the problem in an Max-
imum A Posteriori (MAP) framework and apply importance sam-
pling technique to infer the most probable state of the eye gaze.

Figure 8: The representation of the eye gaze state. A full eye gaze
state can be represented as (P, s, φ, θ), where P = (px, py, pz) is
the eyeball center at the face model space, s is the size of the iris
and pupil region, and (φ, θ) is the pupil center, represented as the
spherical coordinate on the eyeball surface.



6.1 Representation

We represent the eye gaze state V as:

V = (P, s, φ, θ), (10)

where P = (px, py, pz) is the eyeball center at the face model
space, s is the size of the iris and pupil region (the radius), and (φ,
θ) is the pupil center, represented as the spherical coordinate on the
eyeball surface (Fig. 8). Specifically, the eyeball center and iris and
pupil size defines a personalized eyeball model, and they need to be
calibrated for each individual. With a given (P , s), the pupil center
(φ, θ) then determines the 3D eye gaze movement for each frame.

6.2 Eyeball Calibration

Our first step is to calibrate the eyeball center and the size of iris
and pupil region using the reconstructed 3D head pose and facial
deformation, as well as the extracted edge map of iris and pupil
region. Note that this step is done only once for each capture, as
the eyeball center and the iris and pupil radius are constant for each
individual.

To obtain the eyeball center, one can fit a sphere according to the
image appearance and reconstructed 3D facial model. However,
since only partial eyeball is visible, the estimate could be unreliable.
For simplicity and a better robustness, we use a fixed eyeball radius
(12.5mm), which is the average adult eyeball radius. The eyeball
center can be then calculated as the mean of the preselected eyelid
vertices on the face model plus a 3D offset that moves the radius
distance toward the principle direction of 3D face (z-direction in
our case). This allows us to define the eyeball model using its center
and radius.

We now describe how to estimate the size of the iris and pupil re-
gion. We assume that the subject is looking at the camera with
fully open eyes in the starting frames, and the first 20 valid frames
are used for calibration. Based on the extracted edge map of iris
and pupil region (see Section 5), we first perform Hough transform
to fit a circle for each iris and pupil region. We then back project
the 2D circles to the 3D eyeball model using the 3D head poses, and
obtain the corresponding iris and pupil radius on the model space.
Finally, we average all the radii to obtain the final size of the iris
and pupil region.

6.3 3D Eye Gaze Tracking

With the known eyeball center and iris and pupil radius, our next
step is to track the remaining gaze state, the 3D pupil center (φ, θ),
at each frame. Eye gaze motion has complex patterns and simple
temporal tracking could easily suffer from the error accumulation.
On the other hand, the extracted observations (2D pupil center and
edge map) from current frame, though robust, lack detailed accu-
racy. To address the challenge, we propose to combine the extracted
2D pupil center, the edge information and temporal coherence into
a MAP framework (Eq. 11). We then solve for the most probable
eye gaze state via importance sampling.

x∗t = arg max
xt

Pr(xt|ot, Ht, xt−1), (11)

where xt is the state of the current frame t, Ht is the head orienta-
tion in time t, and ot is the current observation. Using Bayes’ rule,
we obtain

x∗t = arg max
xt

Pr(ot|xt, Ht)︸ ︷︷ ︸
observation likelihood

Pr(xt|xt−1)︸ ︷︷ ︸
dynamic likelihood

, (12)

where the Pr(ot|xt, Ht) is the observation likelihood that
measures how well the current state fits the observation and
Pr(xt|xt−1) is the dynamic likelihood that measures how differ-
ent the current state is from the previous state.

Observation likelihood. The observation likelihood consists of
two terms, namely mean-shift center term and edge term. It is for-
mulated as follows:

Pr(ot|xt, Ht) ∝ exp(−wcenEcen − wedgeEedge), (13)

where parameters wcen and wedge are set to 3 and 1 respectively in
the experiments.

The pupil mean-shift center term Ecen measures the difference be-
tween the mean-shift center of synthesized iris and pupil pixels
M(rsil), which is generated using the current head orientation Ht
and the calibrated 3D eyeball model, and the observed pupil mean-
shift center ocen:

Ecen = ‖ocen −M(rsil)‖2. (14)

Intuitively, the extracted 2D mean-shift center is very likely to stay
close to the true 2D pupil center, thus this term effectively con-
strains the search range of candidate pupil centers.

(a) (b)

Figure 9: The extracted edge map of the iris and pupil region and
its distance transform: (a) the observed edge map; (b) the distance
transform of the edge map.

The edge term measures the discrepancies of edge maps between
the rendered and observed images, which also provides a strong cue
to locate the 3D eye pupil center. Note that the edge map is still a
partial observation of the true edge map, though we have removed
many outliers during the extraction. Thus, we propose to use the
trimmed chamfer distance measure for a better robustness:

Eedge =
1

K

K∑
i=1

I0d(i) · Ir(i), (15)

where I0d(i) is the distance transform of the observed edge map
(Fig. 9), and Ir(i) is the rendered binary edge map. This term sums
the K smallest distances amongst the rendered edge pixels. K is
determined by a certain ratio α (0.6 in our experiments) of the total
rendered pixels:

K = round(
∑
i

Ir(i) ∗ α). (16)

Note that we do not perform distance transform on the rendered
edge map due to the limited time budget. In addition, we will set
the weight of edge term to 0 if the edge map is unreliable, which
is considered true when the number of the observed edge pixels are
below a lowerbound (15 pixels).



Dynamic likelihood. Due to the complex eye movement pat-
terns, the commonly used second order constraints ‖xt − 2xt−1 +
xt−2‖ is not suitable. We, therefore, propose a novel dynamic like-
lihood term which automatically degenerate (becoming flat) when
the state change is large:

Pr(xt|xt−1) ∝ exp(−min(dsphere(xt, xt−1), τ)

σ2
), (17)

where dsphere(xt, xt−1) is defined as the minimum distance on the
unit sphere between the two spherical coordinates, the threshold τ
is set to 0.01 rad or 8 degree experimentally and σ is set to 0.1
in our experiments. The dynamic likelihood effectively penalties
the deviation when the state change is small, such as fixation, and
automatically degenerate when the state change is large, such as
saccade. This term effectively ensures the smoothness of the eye
gaze motion, while allowing for large sudden changes.
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Figure 10: Effectiveness of the importance sampling (red and
green cross represent the ground truth and expected eye state re-
spectively): (a) prior Gaussian distribution fitted using the back-
projected mean-shift pupil center; (b) posterior distribution after
the resampling, which variance is effectively reduced and the ex-
pectation is clearly improved toward the ground truth.

Optimization. Since it is nontrivial to evaluate the derivatives
of Eq. 12, we propose to solve the problem through importance
sampling. First, we form a Gaussian distribution using the back-
projected 2D mean-shift center as mean, and then use it to sam-
ple the initial candidate states. The standard deviation is set to
0.2. We then re-evaluate the importance of each candidate using
both observation and dynamic likelihood (Eq. 12). The weighted
candidates are actually an estimate of the true posterior distribu-
tion in the MAP framework. Next, we perform another round of
sampling using this posterior distribution, and the weighted aver-
age of the re-sampled candidate states is then used as the current
3D eye gaze state. Fig. 10 visualizes the initial Gaussian and can-
didate weight distribution after the resampling. The variance is ef-
fectively reduced and the expected state is clearly refined toward
the ground truth, which demonstrate the effectiveness of the resam-
pling method. In our implementation, the number of candidates is
chosen as 200. Parallel implementation on multi-core CPU is used
for realtime performance.

6.4 Eye Tracking Failure Detection and Handling

Eye blinking and eyelid occlusion are natural and frequent actions
during the facial capture. When eye blinking and eyelid occlusion
occurs, results of 2D pupil center detection and edge map extrac-
tion become unstable. In addition, 2D feature detection in the eye
region could also become noisy and inaccurate. In both cases, the
performance of our eye gaze tracker will degrade. To handle these
failure cases, we introduce two novel ideas on failure detection,
which include a eye close detector and a double eye gaze constraint

that utilizes the movement dependency of both eyes. Once the fail-
ure is detected, we will directly use the previous eye gaze state to
predict the output for the current frame.

(a) (b) (c) (d)

Figure 11: The importance of failure detection and handling: (a):
original input video frames; (b): tracked facial landmarks (shown
in green) and the classified pupil pixels (shown in yellow); (c): re-
sults without failure detection and handling; (d): results with fail-
ure detection and handling.

Eye close detector. We propose a novel eye close detector for
the eye blinking event detection. It takes the eye image patch as
input, and returns a binary true/false as output. When the eye is de-
tected as closed, the system will output the previous gaze state for
current frame. Like the eye iris and pupil classifier, we use the ran-
domized forest for training and detection. Because the current train-
ing image dataset contains very few closed eye examples, we have
downloaded additional sample face images with closed eyes. We
further augment the database by performing random 2D similarity
transformations 10 times to the selected landmarks of each sample.
The augmentation makes the learnt trees more robust to possible in-
accurate facial landmarks. We use a forest with 30 trees and depth
10, and it takes about 20mins for the tree training. The classification
error rate is very low in both training and testing dataset, indicating
that the eye close detection is much easier compared with eye iris
and pupil pixel detection. We have found this strategy works well
in practice. This component is also used to refine the 3D facial ge-
ometry. Once eye close event is detected and the distance between
2D landmarks of higher eyelid and lower eyelid is small enough,
we will deform the pre-selected upper eyelid vertices of the facial
deformation to the corresponding lower eyelid vertices using Lapla-
cian deformation [Sorkine et al. 2004], so that the eyes are correctly
closed.

Double eye gaze constraints. Up to now, the two eyes are
separately tracked and can move independently. Thus, the re-
sult could be bad when one of the two gaze trackers outputs an
invalid eye gaze state (Fig. 11). To ensure the movements of
both eyes are valid and natural, we propose a data-driven eye
gaze constraints to statistically ensure the double eye dependency.
Specifically, we represent the motion of both eyes as a 4-value
vector (φleft, θleft, φright, θright), and use the k-means algo-
rithm to cluster the gaze dataset and get k = 60 data centers
(c1, c2, · · · , ck). We consider the current double eye gaze states
u as invalid, if

d = min
i
‖u− ci‖2 ≥ γ, (18)



Figure 12: Reconstructed 3D eye gaze results with varying view
directions and eye colors. Our system detects the iris and pupil
region (red) and estimates the 3D eye gaze (yellow).

where γ is chosen by the training data, which is 0.2 rad or 11.45
degree in our experiments. Once the current eye gaze states are
regarded as outliers, the previous eye gaze states are used to predict
the current state.

7 Evaluation and Results

We have demonstrated the power of our system on a large number
of video sequences, including live video streams captured by a web
camera and monocular video sequences downloaded from the Inter-
net. Additionally, we have evaluated the effectiveness and accuracy
of our system by comparing it against alternative methods. We also
evaluate the importance of key components of our system.

Our system achieves real-time performance and runs at a frame rate
of about 27 frames per second (fps). Table 1 reports computational
times for each key component of our eye gaze tracker. All our ex-
periments were tested on an Intel(R) Xeon(R) CPU 3.3GHz, 16GB
RAM with NVIDIA GTX 780 graphics cards. Our results are best
seen in the accompanying video.

Components Timings(ms)
Expression reconstruction 23

Observation extraction 5
Eye gaze tracking 8.3
Failure detection 0.3

Total 36.6

Table 1: Computational cost of each key component of our system.

7.1 Test on the Real Data

We have tested the effectiveness of our eye gaze tracker on differ-
ent subjects (Fig. 12) . In the online testing, we use a web cam-
era with resolution 800 × 600. The accompanying video shows
that the system can track the eye gaze very robustly and accurately,
even under fast eye gaze rolling, large head pose and extreme facial
expressions. In addition, our system is also robust to large light-
ing changes as well as possible camera blur (Fig. 13). Besides live
video streams, the accompanying video shows that our system can
successfully track the eye gaze and facial expressions from eight
video clips, in which six are from the Internet and two are recorded
by a common RGB web camera.

7.2 Comparison against Face++

In this section, we evaluate the effectiveness and accuracy of our
system by comparing against the state-of-the-art 2D facial feature
detection/tracking system: Face++ [2015]. Face++ is a commer-
cial facial landmark tracker developed by Megvii Technology. The
company provides free API of facial landmark detection for com-
parison. The comparison is evaluated on eight video clips, which

Figure 13: Live demos of our system. Our system is robust and ac-
curate even under significant lighting variations and extreme pose
changes.

contain subjects of different races under various poses and lighting
conditions.

(a) (b) (c) (d)

Figure 14: Comparison against Face++ landmark detector: (a):
the input images; (b): the ground truth; (c): the eye gaze results of
our method; (d): the eye gaze motion fitted by using the 2D pupil
centers outputted by Face++ and our reconstructed 3D head pose
and facial deformation.

Fig. 14 shows some sample results for comparisons. Note that
Face++ is focused on 2D facial landmark detection/tracking rather
than 3D eye gaze tracking. For the purpose of visualization, we
project the 2D pupil centers estimated by Face++ into 3D using
camera parameters obtained in Section 4, as well as 3D eye ball lo-
cation from our calibration process. Similarly, 3D head poses and
facial expression deformation of Face++ are based on those recon-
structed by our system.

The image frames with closed eyes were excluded for evaluation
because ground truth data for those frames are hard to obtain. We
manually labeled the 2D pupil centers for the remaining image
frames to get ground truth data for comparison. As suggested by
[BioID 2015], the error metric is defined as follows:

E =
max(‖pl − p′l‖, ‖pr − p′r‖)

‖p′l − p′r‖
, (19)



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15: The quantitative evaluation of our algorithm and comparison against Face++, where (a)-(h) correspond to results obtained from
eight different video clips A - H. Note that only 2D pupil center locations are compared as Face++ does not reconstruct 3D eye gaze motion.

where pl and pr are the centers of the left and right pupils ob-
tained by the algorithm, respectively. And p′l and p′r are corre-
sponding ground truth data. Fig. 15 shows that our method obtains
steeper error distribution curve than face++ in all the video clips,
which demonstrates that our method is more robust and accurate
than face++.

(a) (b)

Figure 16: Evaluation on the randomized forest learning: (a):
evaluation on the tree depth; (b): evaluation on the patch size.

7.3 More Evaluations

We now evaluate the key components of our 3D facial and eye gaze
tracker.

Evaluation on iris and pupil pixel classifier. The accuracy of
our system relies heavily on the performance of iris and pupil pixel
classifier. For our application, the maximum depth of the trees and
the patch size are two important parameters that influence the fi-
nal performance of classification. Therefore, we evaluate on the
tree depth and patch size of the randomized forest classifier. We
randomly split our data sets into training data (2683 images) and
testing data (298 images). A smaller set of training images (804
images) are further selected for evaluation. Fig. 16 shows the eval-
uation on the tree depth (left) and patch size (right), respectively.

We experimentally set the patch size to 15 and the maximum tree
depth to 13, achieving a good trade-off between performance and
accuracy.

relative feature displacement [%]

0 5 10 15 20 25

p
e
rc

e
n

ta
g

e
 o

f 
o

c
c

u
ra

n
c
e

s
 [

%
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

with all terms

without center

without edge

Figure 17: Evaluation of the pupil center term and the edge terms.
The x-axis represents the relative 2D pupil center displacement to
the ground truth (Eq. 19), and the y-axis shows the accumulative
error distributions. The combination of the pupil center and edge
terms achieves the best performance.

Importance of pupil center term and edge terms. The objec-
tive function for eye gaze tracking consists of two image terms,
including the pupil center term and the edge term. We have evalu-
ated the importance of each term to the eye gaze tracking process.
Specifically, we drop off each term described in Eq. 13 and track
the eye gaze motion using the same video streams. Fig. 17 shows
the comparison results for three methods. It clearly shows both
terms are necessary and the combination achieves the lowest error.
In addition, it also shows the pupil center term seems to be more
important than the edge term in the current tracking framework.



Importance of failure detection. To demonstrate the importance
of failure detection, we compare the results of tracking eye gaze
with or without failure detection on the same video sequences
(Fig. 11). The results clearly show that the failure detection compo-
nent enhances the robustness of the system.

7.4 Applications

This section discusses the applications of our performance capture
system in performance-based facial animation, realtime gaze cap-
ture and visualization.

Figure 18: Realtime eye gaze capture (top row) and eye gaze vi-
sualization (bottom row). Top row: the user is instructed to watch
a video (“a running cat”) on the screen and the focus points on
the screen are visualized using a heatmap; bottom row: we edit the
iris and pupil appearance by applying a new iris and pupil texture,
projecting it to image plane and blending it with the original image.

Facial and eye gaze retargeting. Given the captured facial per-
formances as well as the eye gaze states of both eyes, we can easily
retarget the tracked motion to a virtual avatar. To achieve this goal,
we first estimate the identity parameters of a target avatar. We then
estimate the eyeball center and the size of iris and pupil region for
the animated avatar using our calibration process. Note that the
eyeball information can also be directly from avatar modeling pro-
cess. With the estimated identity parameters and eyeball model of
the target avatar, we can directly transfer the expression parameters
and the pupil centers (φ, θ), as well as 3D head poses, from the
source to the target and drive the avatar to perform similar expres-
sions, poses and eye gaze motions as the source’s in real time.

Realtime eye gaze capture. With the reconstructed 3D head
poses and tracked eye gaze states, we can locate eye gaze points
(fixations) in screen space at runtime and visualize them using a
heatmap. To start the process, we compute a linear transformation
between the camera image plane and the screen plane by instructing

the user to focus on a small set of pre-defined target points on the
screen (e.g., left top, middle top, right top, etc.) and formulating a
least square problem. The calibration process allows us to map the
eye gaze points from the image plane to the screen space. We visu-
alize the focus points on the screen with a headmap generated by a
gaussian kernel. We also set a timer for each pixel to cool down the
previous focus points. Fig. 18(top) shows a sample heatmap gener-
ated by the use following and looking at a running cat in a video
sequence.

Eye gaze visualization. One nice property of our system is that
it not only captures eye gaze motion, but also calibrates the eyeball
center and the size of iris and pupil region. Thus, we are able to
obtain the exact iris and pupil regions in each video frame by pro-
jecting the eyeball onto the image plane. In this application, the iris
and pupil appearance is edited by applying a new iris and pupil tex-
ture, projecting it to image plane and blending it with the original
image (Fig. 18(bottom)). Note that this process is fully automatic
and no manual refinement is needed. Though the performance has
large pose and eye gaze variations as well as frequent eye blinkings,
the results are continuous and natural. This clearly demonstrates the
accuracy and robustness of our system.

(a) (b) (c)

Figure 19: Limitation of our system on peculiar eye gaze motions,
such as rolling white eyes: (a): input video frame; (b): result with-
out failure detection; (c): result with failure detection. When failure
is detected, the gaze state of the previous frame is used to predict
the current state.

8 Conclusion

In this paper, we demonstrate an end-to-end realtime system that
captures the coordinated movements of 3D head poses, facial ex-
pression deformation and eye gaze using a monocular video cam-
era. The key idea of our paper is to enhance a realtime facial tracker
by adding a 3D eye gaze tracker that automatically and robustly
track the 3D eye gaze in the Maximum A Posterior (MAP) frame-
work. Our system is appealing for facial and eye gaze capture be-
cause it is fully automatic, runs in realtime and offers the lowest
cost and a simplified setup. We have tested our system on both live
video streams and the Internet videos, demonstrating its accuracy
and robustness under a variety of uncontrolled lighting conditions
and overcoming significant differences of races, genders, shapes,
poses and expressions across individuals.

The current system has a few limitations. First, since the eye gaze
tracking is based on classification of the iris and pupil pixels, the
system could fail to detect the 2D pupil center locations when
the subject performs some peculiar eye gaze motion, such as eye
rolling. Fig. 19 illustrates an example of such eye gaze. Note that
with our failure detection handling component, our system success-
fully detects the invalid gaze and directly uses the previous gaze
state to predict the current state, thereby avoiding visually unnatu-
ral eye gaze motion. In addition, similar to other video-based facial



(a) (b)

(c) (d)

Figure 20: Comparison against Ren et al. [2014]: (a) & (c) are
results from Ren et al. [2014], and (b) & (d) are our results. The
top row shows the results on an image with a low quality, and the
bottom show shows the case with an extreme pose.

performance systems, our system often fails to accurately track fa-
cial expressions and eye gaze when many of the facial features are
occluded in the video frames. Another limitation of the system is
that captured facial performances do not contain fine geometric de-
tails. One possible solution is to combine our eye gaze tracker with
the system proposed by Cao et al. [2015] for realtime high-fidelity
facial and eye gaze animation.

APPENDIX

Though the LBF regressor [Ren et al. 2014] is fast and robust, we
found the result could degenerate significantly for cases with ex-
treme poses and low-quality image (see Fig. 20 (a) & and (c)). We
have made two effective refinements in the training/prediction pro-
cess, and achieved a much more robust tracker (Fig. 20 (b) & (d))
than the original method described in Ren et al. [2014] .

We introduce a convex-hull based feature selection scheme that
effectively avoids selecting pixels at background in the random
forests training process. To train a random forest for a particular
landmark, we need to select most discriminative feature pairs (giv-
ing rise to maximum variance reduction) for each node from a set of
candidate feature locations. These candidates are firstly sampled at
a reference shape, and then transferred to each of the tracing sample
through a similarity transform. Ren et al. [2014] proposed to select
features at the local region of a landmark. However, this method
might select locations that are totally outside the facial region which
could be random background. This is the case especially for the
contour landmarks. As a result, the landmark locations can be inac-
curate when the input images contain random noise and/or a back-
ground which is different from those of the training images. To
address this issue, we refine the feature selection process by fur-
ther constraining the sample locations to be inside the convex hull
of the 2d feature points (Fig. 21). Unreliable feature locations at
background can be effectively ignored. Note that this scheme is
only performed on the reference shape at the training stage. Once
the good feature pairs are selected, they will be directly used in the
prediction. No further convex-hull check is needed at the prediction
stage.

In addition, we refine the initialization step at the prediction stage
for a better robustness to pose variations. In the tracking process

(a) (b) (c)

Figure 21: Convex-hull based feature selection for random forests
training: (a) the original feature sampling process selects a local
region within a certain radius around each landmark; (b) convex-
hull of the facial features which is used to constrain the local re-
gion; (c) our feature sampling process only selects the local regions
inside the convex hull, thus the unreliable regions at background are
effectively excluded.

of Ren et al. [2014], the initial shape S0 is set as the mean-shape
aligned to the previous landmark locations with a similarity trans-
form. However, we found in experiments that this strategy might
output inaccurate result for faces with extreme poses. An alterna-
tive is to use the k nearest neighbors to the previous result as the
initializations, and take the mean/median of the results as the out-
put. Though this strategy does address the issue effectively, it might
output less stable results as the nearest neighbors are more sensitive
to the shape changes. As a compromise, we combine these two
strategies to draw benefits from both ends. Specifically, given the
landmark locations from the previous frame, we find the nearest
neighbors and the aligned mean-shape. We then count the number
of feature differences between them which are larger than a thresh-
old (ε1). If this number is no larger than a given upper bound (ε2),
we use the aligned mean-shape as the initialization. Otherwise, the
k nearest neighbors (k = 3) are used. Our experiment shows that
this idea is quite effective to obtain both frame-frame smoothness
and robustness to large pose variations. ε1 and ε2 are experimen-
tally set to 15 pixels and 7, respectively.
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RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, ACM, 175–184.

SUGANO, Y., MATSUSHITA, Y., AND SATO, Y. 2014. Learning-
by-synthesis for appearance-based 3d gaze estimation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 1821–1828.

TIAN, Y.-L., KANADE, T., AND COHN, J. F. 2000. Dual-state
parametric eye tracking. In IEEE International Conference on
Automatic Face and Gesture Recognition, 110–115.

TOBII TECHNOLOGIES, 2015. http://www.tobii.com.

VALGAERTS, L., WU, C., BRUHN, A., SEIDEL, H.-P., AND
THEOBALT, C. 2012. Lightweight binocular facial performance
capture under uncontrolled lighting. ACM Trans. Graph. 31, 6
(Nov.), 187:1–187:11.

VLASIC, D., BRAND, M., PFISTER, H., AND POPOVIĆ, J. 2005.
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